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ABSTRACT

Multimodal named entity recognition (MNER) aims to detect
and classify named entities in multimodal scenarios. It re-
quires bridging the gap between natural language and visual
context, which presents two-fold challenges: the cross-modal
alignment is diversified, and the cross-modal interaction is
sometimes implicit. Existing MNER methods are vulnerable
to some implicit interactions and are prone to overlook the
involved significant features. To tackle this problem, we nov-
elly propose to refine the cross-modal attention by identify-
ing and highlighting some task-salient features. The saliency
of each feature is measured according to its correlation with
the expanded entity label words derived from external knowl-
edge bases. We further propose an end-to-end Transformer-
based MNER framework, which holds neater architecture yet
achieves better performance than previous methods. Exten-
sive experiments are conducted to validate the merits of our
method. Moreover, our method reveals a significant advan-
tage in data efficiency and generalization ability.

Index Terms— Multimodal Named Entity Recognition,
Multimodal Interaction, Social Media

1. INTRODUCTION

Social media such as Twitter and Instagram provide massive
user-generated content in the unstructured form such as texts
and images. To extract relevant information from social me-
dia, multimodal named entity recognition (MNER) has at-
tracted much attention, which aims at identifying and clas-
sifying1 named entities from unstructured texts with attached
images [?]. This task can be applied in many scenarios, such
as multimedia relation extraction [1], multimedia search [2],
etc.

1The classification types usually include person (PER), location (LOC),
organization (ORG) and miscellaneous (MISC).

(c) The Harry Potter theme park
(LOC) looks like …

(b) My Harry Potter (MISC)
❤.

(a) Harry Potter (PER),
president of the …

(d) My collections of Harry
Potter (MISC).

Harry Potter

Fig. 1: MNER examples related with Harry Potter. We high-
light corresponding named entities and present their types.

Compared with other domains such as newswire articles,
texts on social media pose some inherent problems includ-
ing colloquial language, short and coarse context, etc. So
it is critical to incorporate the attached images to enhance
the texts, which is however quite challenging. Besides the
widely-concerned semantic gap problem, the obstacle usually
lies in the complex cross-modal correlations between texts
and images. First, the cross-modal alignment is diversified.
As shown in Figure 1, “Harry Potter” is correlated with diver-
sified multimodal contexts, including a person, a dog, a build-
ing, and film posters. This complex one-to-many correspon-
dence thus brings great obstacles. Second, the cross-modal
interaction is sometimes implicit. For example, the “Harry
Potter” corresponds to the dog in Figure 1(b) based on the
reasoning: Harry Potter is a−−→ wizard dressed like←−−−−−−−− dog.

However, existing approaches are problematic for han-
dling the complicated cross-modal interaction. Some efforts
consider various mechanisms such as gated filter [3, 4] and
cross-attention [5, 6] to model cross-modal interaction. Nev-
ertheless, the cross-modal interaction is indirectly learned un-
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der the supervision of MNER task annotations. So it is in-
sufficient to learn the implicit cross-modal alignment such as
the correspondence between the ‘Harry Potter” and the “dog”
in Figure 1(b). Some other works resort to image-text match-
ing prediction to guide cross-modal interaction [7, 8], which
only provides coarse-grained guidance and may even intro-
duce noises. For instance, these models may predict the text
and image in Figure 1(b) to be irrelevant. To summarize,
without explicit and fine-grained cross-modal alignment an-
notations as the supervision signal, existing works can hardly
capture the implicit cross-modal interaction. This leads to the
neglect of some implicit features that are critical to compre-
hensively understand the multimodal context. And this prob-
lem becomes more pronounced when only limited training
samples are provided.

To address this problem, we propose to resort to external
knowledge to identify and highlight the task-salient features,
and further refine the cross-modal attention. Intuitively, the
saliency of a feature can be estimated according to its corre-
lation with the entity labels, i.e., PERSON, ORGANIZATION,
LOCATION, etc. However, these entity labels are far from
enough to represent the comprehensive semantic information
of entity categories. To tackle it, we propose to expand an en-
tity label such as PERSON into a set of closely-relevant words
such as “woman”, “boy”, “athlete”, “hat”, etc. by referring to
either a textual knowledge base or a multimodal knowledge
base such as WordNet and VisualGenome.

Based on the intuition above, we propose a novel frame-
work named CAT-MNER, whose backbone is a Transformer
with the refined cross-modal attention. Specifically, we first
employ external knowledge to expand the entity type labels
and use them to identify task-salient features. Then a gate
mechanism utilizes the features’ saliency scores to refine the
cross-modal attention weights. This helps to highlight the
task-salient features and meanwhile prevent them from being
overlooked in the cross-modal interaction. Our main contri-
butions are summarized as follows: 1) We newly propose to
refine the cross-modal attention for MNER by identifying and
highlighting task-salient features, where the saliency of each
feature is measured with the help of external knowledge. 2)
We further propose an end-to-end Transformer-based MNER
framework, which holds neater architecture yet achieves bet-
ter performance than previous methods. 3) Extensive exper-
iments are conducted to validate the merits of our method.
Specially, our method has the significant advantage of data
efficiency and generalization ability.

2. RELATED WORK

There has been vast prior research about MNER on social me-
dia. Zhang et al. [3] first explored MNER in the tweets and
proposed a co-attention network to incorporate the visual in-
formation. Since it is observed that some visual signals are
irrelevant with the texts and thus bring noises, many works

utilize the attention mechanism to extract text-related visual
features while suppressing other visual information [4, 5, 9].
Besides, Sun et al. [7,8] propagated image-text relation to the
cross-modal fusion, Lu et al. [10] proposed to only resort to
the multimodal NER model when the textual NER model is
uncertain. To address the semantic gap problem, Zheng et
al. [11] utilized adversarial learning to map features of differ-
ent modalities to the same space, Wu et al. [12] used the object
labels to represent visual features, Zhang et al. [6] designed
a unified multimodal graph to represent the sentence and the
image, Chen et al. [13] transformed images into captions.

3. METHODOLOGY

3.1. Overall Architecture

As shown in Figure 2(a), given a sentence T and an image I ,
the following three components are used for MNER.

Feature Extraction. For the sentence T , follow-
ing the standard MNER approach, it is first tokenized
and then mapped to a sequence of word embeddings
(w1,w2, ...,wLT

) with the embedding layer of a pre-trained
language model (LM).

As for the image I , previous methods generally employ
additional processing steps such as object detection. Unlike
them, we utilize a pre-trained Vision Transformer (ViT) to
extract visual features (v1,v2, ...,vLI

) in an end-to-end man-
ner. Instead of directly feeding the image, we manually split
the it into LI = 4× 4 grids and then feed them into ViT.

Refined Cross-modal Attention. Here we need to obtain
the word embeddings that are aware of the multimodal con-
texts. Conventional choices to model the cross-modal inter-
actions include gated filter [3, 4], cross-attention [5, 6], etc.,
which might overlook some significant features involved in
the implicit cross-modal relations. To prevent these features
from being overlooked, we thus propose a R-Transformer(·)
that modifies the cross-modal attention with some entity label
words expanded from some knowledge bases (KBs).

R-Transformer
(
{wi}LT

i=1, {vi}LI
i=1, {c}

LC
i=1

)
(1)

Here {c}LC
i=1 = C-Transformer

(
{c}LC

i=1

)
are embeddings of

the label words. Ideally, the R-Transformer(·) can stress the
task-salient features, and further improve the cross-modal in-
teractions than the vanilla cross-attention approach. The im-
plementation details are elaborated in Section 3.2.

Span-based Prediction. Instead of the widely-applied
CRF network, recent researches have proven the competi-
tiveness of span-based NER models [14]. Following these
works, we reformulate NER as the task of identifying the start
and end indices of an entity span as well as assigning a cat-
egory label to the span. So we first enumerate all possible
spans in the sentence: {si}Ni=1. Then for each text span si =
{wm, ..., wn}, we concatenate the embeddings of the first and
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Fig. 2: Framework of CAT-MNER

last tokens and then feed them into a feed-forward neural net-
work (FFN) to predict its entity type: lci = FFN ([wm||wn]).
Here lci represents the logit of the entity type from {person,
location, organization, misc, not entity} 2.

Training Objective. Our objective is to assign a correct
entity type to each enumerated span. So the loss function of
MNER is formulated as the softmax cross-entropy loss:

p (lci ) =
exp(lci )∑C
ĉ=1 exp(l

ĉ
i )

LMNER = −
N∑
i=1

C∑
c=1

yci log p(l
c
i )

(2)
where C represents the number of the entity types. yci is the
binary ground-truth label of the ith span.

3.2. Refined Multimodal Attention

Our R-Transformer(·) is the same as the general Transformer
except for the refined multimodal attention component. So we
elaborate its detailed design in this section. Considering the
inputs come from both textual and visual modalities, namely
T and I, we thus consider both intra-modal self-attention
(T2T, I2I) and inter-modal cross-attention (T2I, I2T) as shown
in Figure 2(b). To efficiently learn the complex inter-modal
interactions, we propose to refine the cross-attention. In the
following, we take the I2T attention, which aggregates infor-
mation from visual features to each textual feature, as an ex-
ample to illustrate our implementation. It is straight-forward
to generalize to the T2I attention.

Overview. For a general I2T attention, textual and visual
features are first projected into query (Q), key (K) and value
(V) space. Then an attention mechanism is performed as be-

2To avoid overlapping predictions, following [14], we sort the spans in
the descending order of the logits and select non-overlap spans in order.

low:
Q = FFNQ(w), K = FFNK(v), V = FFNV (v)

Attention (Q,K,V ) = AI2TV = Softmax

(
QK⊤
√
d

)
V

(3)
where AI2T ∈ RLT×LI represents the attention scores. w ∈
RLT×d and v ∈ RLI×d are embeddings of visual and textual
tokens respectively. d is the shared dimension.

However, when the query and key belong to different
modalities, the vanilla cross-attention may fail to capture
some implicit correlations and assign a low attention weight
to the corresponding interaction. Consequently, it is prone
to overlook some important features. To highlight the task-
helpful features and prevent them from being overlooked, we
propose to utilize features’ saliency scores to refine the atten-
tion scores as shown in Figure 2(c).

gI = Tanh (FFN (v))

A′
I2T = Softmax

(
(1− gI)⊙QK⊤ + gI ⊙ sI√

d

)
(4)

Here QK⊤ is the original attention score. sI ∈ RLI repre-
sents the saliency score of visual tokens, which reveals which
visual feature is more related to the MNER task. gI ∈ RLI is
a gate used to control how much the saliency score should be
considered. ⊙ denotes the broadcasted element-wise multi-
plication. By combing the original attention score QK⊤ and
the saliency score sI under the control of gI , the cross-modal
interaction related with the salient features are enhanced.

Saliency Quantification. The critical problem now lies in
obtaining each feature’s saliency score, which is to quantify
sI . To this end, we expand the entity type labels into specific
words as the pivots: the correlation between the features and
these expanded label words can measure their saliency.
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To achieve this purpose, inspired by [15], we expand each
entity type label with the Top10 most related words. For the
special label MISC, we first rewrite it with multiple specific
entity labels, such as transportation, animal, etc., and then
propose two methods to retrieve related words from a KB:

• Retrieve from Textual KB. We incorporate off-the-
shelf Related Words to retrieve words having high se-
mantic correlation with the entity type labels. Related
Words is a KB that incorporates multiple KBs includ-
ing WordNet, Concept Net, etc. For example, person
is expanded with worker, child, female, etc.

• Retrieve from Multimodal KB. We also resort to the
VisualGenome-based scene graph KB that records the
multimodal knowledge of “object-predicate-object”.
Specifically, for each entity type label, we first select
the Top5 related objects based on word vector simi-
larity. Then we count the co-occurrence frequency of
other objects directly connected with these seed objects
in all scene graphs and select the Top5 frequent objects’
labels as the related words. For example, person is
expanded with men, coat, arm, etc.

Then to estimate the saliency score, given the expanded
label word set {ci}LC

i=1, we first embed them with a LM:

c = (c1, c2, ..., cLC
) = LM (c1, c2, ..., cLC

) (5)

Considering the inter-modal attention is refined in each
layer of the Transformer, it is necessary to keep the fea-
tures of vision tokens and label words in the same feature
space. Thus as shown in the left of Figure 2(a), we intro-
duce a C-Transformer to encode the expanded label words.
C-Transformer does not have the self-attention mechanism
but shares other weights with the R-Transformer. For each
layer in R-Transformer, the saliency score of visual tokens
sI ∈ RLI is calculated through:

sI = Average

(
Softmax

(
FFNQ (v)FFNK (c)

⊤
√
d

))
(6)

where c comes from the C-Transformer, Average(·) denotes
a mean pooling that reduces the second dimension.

Overall, estimating the saliency benefits from two types of
knowledge: the symbolic knowledge from a KB and the con-
tinuous knowledge of pre-training tasks that helps to obtain
the correlation score in Eq 6.

4. EXPERIMENT

4.1. Settings

Datasets. We test on two benchmarks: Twitter-2015 [3] and
Twitter-2017 [4], which are also used by our predecessors.

Competitors. We compare with a wide range of base-
lines: 1) For textual baselines, we compare with BiLSTM-
CRF [16], CNN-BiLSTM-CRF [17], BERT-CRF as well as
the span-based NER models (e.g. BERT-span, RoBERTa-
span) [14]. 2) For multimodal baselines, we compare with
multiple state-of-the-art methods including OCSGA [12],
UMT [5], IAIK [18], RpBERT [8] and UMGF [6].

Implementation Details. All the experiments are con-
ducted on 8 NVIDIA V100 GPUs using Pytorch 1.7. To take
advantage of the image-text matching ability obtained in pre-
training, we use ViT from CLIP to extract visual features. We
test with different pre-trained language modal backbones in-
cluding RoBERTa and BERT. We set the AdamW optimizer
with the learning rate of 5e-4 and use a warmup linear sched-
uler to control the learning rate. The batch size is set as 10.

4.2. Main Results

Multiple conclusions can be drawn based on the results in
Table 1: 1) By comparing the textual baselines, we can see
that the CRF-based methods and span-based methods achieve
close results. And replacing the backbone of BERT with
RoBERTa can further improve the performance. 2) Previous
multimodal models do not consistently outperform the textual
models 3. We speculate that this is because inappropriate fus-
ing the two modalities may even introduce noises and harm
the prediction. 3) CAT-MNER achieves significant improve-
ments compared with the existing methods. The improvement
is more prominent on less frequent entity types (e.g., ORG,
MISC in Twitter-2015 and MISC in Twitter-2017).

4.3. Detailed Analysis

Data Efficiency Analysis. To explore the model perfor-
mance when training data is limited, we randomly sample
α ∈ {50, 100, 200, 400} samples from the original training
set (4000 and 3071 samples for Twitter-2015 and Twitter-
2017) to train CAT-MNER and validate/test on the complete
valid/test set. We report the results averaged over 8 samplings
and runs for each α. For fairness, we also compare with the
textual baseline (denoted as TEXT), CAT-MNER w/o the re-
finement mechanism (denoted as MM) and the UMT4.

As shown in Figure 3, CAT-MNER significantly outper-
forms TEXT and UMT when the training data is extremely
limited. But the improvements become smaller as the training
data increases. Besides, compared with MM, CAT-MNER is
more efficient for the less frequent entity types (e.g., ORG in
Twitter-2015 and LOC, MISC in Twitter-2017), which reaf-
firms the superiority of our refinement mechanism.

Generalization Analysis. Table 2 shows the compari-
son of CAT-MNER and baselines for generalization analysis.

3The similar results were also observed by the concurrent work [19].
4It is the most advanced work that can be reproduced correctly.
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Table 1: Performance comparison in Twitter-2015 and Twitter-2017. We report the Micro score of every evaluation metric.
Results of methods with † come from [5]. Results with ‡ are reproduced by us. Other results are obtained from the corresponding
papers. “e2e” indicates whether the model is end-to-end.

Modal. Model
Twitter-2015 Twitter-2017

e2eF1 per type Overall F1 per type Overall
PER LOC ORG MISC P R F1 PER LOC ORG MISC P R F1

T

BiLSTM-CRF† 76.77 72.56 41.33 26.80 68.14 61.09 64.42 85.12 72.68 72.50 52.56 79.42 73.43 76.31 "

CNN-BiLSTM-CRF† 80.86 75.39 47.77 32.61 66.24 68.09 67.15 87.99 77.44 74.02 60.82 80.00 78.76 79.37 "

BERTbase-CRF‡ 85.37 81.82 63.26 44.13 75.56 73.88 74.71 90.66 84.89 83.71 66.86 86.10 83.85 84.96 "

BERTbase-SPAN‡ 85.35 81.88 62.06 43.23 75.52 73.83 74.76 90.84 85.55 81.99 69.77 85.68 84.60 85.14 "

BERTlarge-SPAN‡ 85.37 82.58 66.06 46.22 76.29 75.56 75.92 92.83 86.76 84.50 71.52 87.31 87.05 87.18 "

RoBERTalarge-SPAN‡ 87.20 83.58 66.33 50.66 77.48 77.43 77.45 94.27 86.23 87.22 74.94 88.71 89.44 89.06 "

T+V

OCSGA [12] 84.68 79.95 56.64 39.47 74.71 71.12 72.92 - - - - - - - %

UMT [5] 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31 "

IAIK [18] 84.28 79.43 58.97 41.47 74.78 71.82 73.27 - - - - - - - %

RpBERT [8] - - - - - - 74.40 - - - - - - - %

UMGF [6] 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51 %

CAT-MNER (BERTbase) 85.57 82.53 63.77 43.38 76.19 74.65 75.41 91.90 85.96 83.38 68.67 87.04 84.97 85.99 "

CAT-MNER (BERTlarge) 86.28 83.44 68.34 46.85 77.16 76.61 76.89 92.59 86.43 86.52 73.65 88.70 87.12 87.90 "

CAT-MNER (RoBERTalarge) 88.04 84.70 68.04 52.33 78.75 78.69 78.72 94.61 88.40 88.14 80.50 90.27 90.67 90.47 "

Twitter-15

Twitter-17

Fig. 3: Micro-F1 of the methods under the data-limited condition. CAT represents CAT-MNER .

Table 2: Comparison of the generalization ability. Results
with † come from [6].

Method Twitter-17→Twitter-15 Twitter-15→Twitter-17
P R F1 P R F1

UMT† 64.67 63.59 64.13 67.80 55.23 60.87
UMGF† 67.00 62.81 66.21 69.88 56.92 62.74

CAT-MNER 74.86 63.01 68.43 70.69 59.44 64.58

All the models use BERTbase as the text backbone. Twitter-
17→Twitter-15 denotes the model is trained on Twitter-2017
and tested on Twitter-2015, and vice versa. We observe
that CAT-MNER significantly outperforms the baselines by
a large margin. This result demonstrates the strong general-
ization ability of our model.

Ablation Study. To verify the effectiveness of each com-
ponent, we ablate them and report the results in Table 3. We
can find out that: 1) For the refinement mechanism, it helps

Table 3: Ablation study. “w/o Refine.” is implemented with
self-attention over the concatenated multimodal inputs.

Method Twitter-2015 Twitter-2017

Textual KB 78.72 90.47
w/o Refine. 77.63 (↓ 1.09) 89.23 (↓ 1.24)
w/o I2T Refine. 77.84 (↓ 0.88) 89.44 (↓ 1.03)
w/o T2I Refine. 78.08 (↓ 0.64) 89.77 (↓ 0.70)
w/o Image 77.45 (↓ 1.27) 89.06 (↓ 1.41)

Multimodal KB 78.22 (↓ 0.50) 90.13 (↓ 0.34)

to improve the MNER performance a lot: with the textual
baseline as the benchmark, CAT-MNER achieves a larger
improvement than CAT-MNER w/o Refine. Besides, the I2T
refinement is more important than the T2I refinement. The
reason may be that MNER is a text-central task, so it is more
critical to aggregate helpful visual information to enhance the
textual information. 2) For different methods to expand the
label words, it can be seen that textual KB-retrieved clues are

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on September 08,2022 at 09:18:46 UTC from IEEE Xplore.  Restrictions apply. 



Chicago is ready for
Bears (ORG) game .

A tangible use of 
GIS (MISC)

Buddy (MISC) and
Claudia were
adopted together!

Input:

Original:

Refined:

(a) (c)(b)

Fig. 4: Several cases about the attention map of the entity
span highlighted in the text.

better than multimodal KB-retrieved ones. The reason may
be that the latter have many fine-grained concepts words such
as ‘leg’ and ‘neck’, which are not suitable for social media.

4.4. Case Study

We also present several examples of the attention map in Fig-
ure 4, which is used to explain the superiority of the refined at-
tention for complex cross-modal interactions. 1) For the one-
to-many entity alignment, although “bears” usually denote
the animal that is correlated with the “tree” in Figure 4(a),
the refined attention helps this textual span to attend to the vi-
sual feature of “athletes”. Figure 4(b) shows similar results.
2) For the unseen entities such as the “GIS” in Figure 4(c),
without refinement, it attends more to the building-like region
in the picture. And the refinement mechanism successfully
makes it attend to the menu of the application program.

5. CONCLUSION

In this paper, to address the problem of complicated cross-
modal interactions in MNER, we propose to refine the atten-
tion scores with the features’ saliency scores obtained from
expanded entity label words. Both quantitative and qualita-
tive experimental results verify the efficiency of our methods.
Specially, we achieve huge performance boosts in terms of
data efficiency and generalization ability.
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